

Overview of ep/eA physics program at a future Electron-Ion Collider (EIC) facility

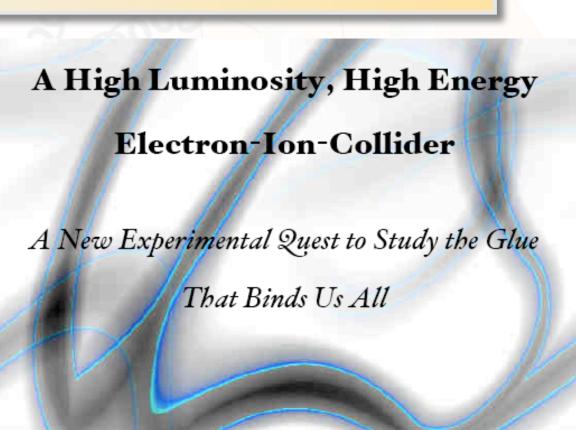
Bernd Surrow

Unanimous recommendation of the QCD Town Meeting,
Rutgers University, NJ,
January 13, 2007

A high luminosity Electron-Ion Collider (EIC) is the highest priority of the QCD community for new construction after the JLab 12GeV and RHICII upgrades. EIC will address compelling physics questions essential for understanding the fundamental structure of matter:

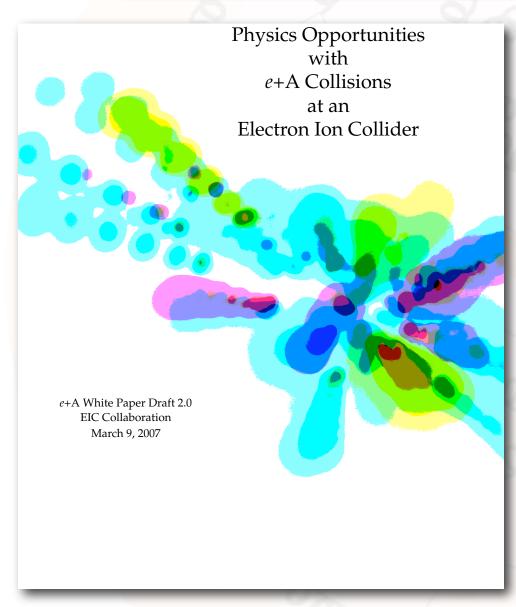
- Precision imaging of the sea-quarks and gluons to determine the spin, flavor and spatial structure of the nucleon.
- Definitive study of the universal nature of strong gluons fields in nuclei.

This goal requires that R&D resources be allocated for expeditious development of collider and detector design



- EIC Whitepaper
 - Input for the NSACLRP 2007 process

NSAC: Nuclear Science Advisory


Committee

LRP: Long-Range Planning

The Electron Ion Collider Collaboration March 27, 2007

The EIC Collaboration*

⁸J. Annand, ¹J. Arrington, ²⁴R. Averbeck, ³M. Baker, ²⁶W. Brooks, ²⁶A. Bruell, ¹⁷A. Caldwell, ²⁶J.P. Chen, ²R. Choudhury, ⁹E. Christy, ⁷B. Cole, ⁴D. De Florian, ²⁴A. Deshpande, ¹⁶K.Dow, ²⁴A.Drees, ³J.C. Dunlop, ²D. Dutta, ²⁶R. Ent, ¹⁶R. Fatemi, ¹⁶W. Franklin, ²⁶D. Gaskell, ¹⁴G. Garvey, ¹⁰M.Grosse-Perdekamp, ¹K. Hafidi, ¹⁶D. Hasell, ³T. Hemmick, ¹R. Holt, ⁷E. Hughes, ²⁰C. Hyde-Wright, ⁵G. Igo, ¹²K. Imai, ⁸D. Ireland, ²⁴B. Jacak, ¹³P. Jacobs, ²⁶M. Jones, ⁸R. Kaiser, ¹⁵D. Kawall, ⁹C. Keppel, ⁶E. Kinney, ¹⁶M. Kohl, ²V. Kumar, ¹⁵K. Kumar, ¹⁹G. Kyle, ¹¹J. Lajoie, ¹⁴M. Leitch, ²⁵J. Lichtenstadt, ⁸K. Livingstone, ¹⁸W. Lorenzon, ¹³H. Matis, ¹⁰N. Makins, ¹⁶M. Miller, ¹⁶R. Milner, ²A. Mohanty, ³D. Morrison, ²⁴Y. Ning, ¹³G. Odyniec, ¹¹C. Ogilvie, ²L. Pant, ²⁴V. Pantuyev, ¹⁹S. Pate, ²⁴P. Paul, ¹⁰J.-C. Peng, ¹⁶R. Redwine, ¹P. Reimer, ¹³H.-G.Ritter, ⁸G. Rosner, ²³A. Sandacz, ⁶J. Seele, ¹⁰R. Seidl, ⁸B. Seitz, ²P. Shukla, ¹³E. Sichtermann, ¹⁶F. Simon, ³P. Sorensen, ³P. Steinberg, ²²M. Stratmann, ²¹M. Strikman, ¹⁶B. Surrow, ¹⁶E. Tsentalovich, ⁹V. Tvaskis, ³T. Ullrich, ³R. Venugopalan, ³W. Vogelsang, ¹³H. Wieman, ¹³N. Xu, ³Z. Xu, ⁷W. Zajc

¹Argonne National Laboratory, Argonne, IL

²Bhabha Atomic Research Centre, Mumbai, India

³Brookhaven National Laboratory, Upton, NY

⁴University of Buenos Aires, Argentina

⁵University of California, Los Angeles, CA

⁶University of Colorado, Boulder,CO

⁷Columbia University, New York, NY

⁸University of Glasgow, Scotland, United Kingdom

⁹Hampton University, Hampton, VA

¹⁰University of Illinois, Urbana-Champaign, IL

¹¹Iowa State University, Ames, IA

¹²University of Kyoto, Japan

¹³Lawrence Berkeley National Laboratory, Berkeley, CA

¹⁴Los Alamos National Laboratory, Los Alamos, NM

¹⁵University of Massachusetts, Amherst, MA

¹⁶MIT, Cambridge, MA

¹⁷Max Planck Institüt für Physik, Munich, Germany

¹⁸University of Michigan Ann Arbor, MI

¹⁹New Mexico State University, Las Cruces, NM

²⁰Old Dominion University, Norfolk, VA

²¹Penn State University, PA

²²RIKEN, Wako, Japan

²³Soltan Institute for Nuclear Studies, Warsaw, Poland

²⁴SUNY, Stony Brook, NY

²⁵Tel Aviv University, Israel

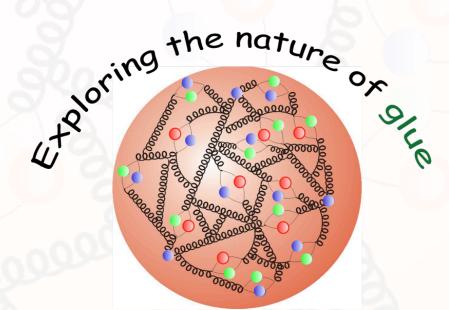
²⁶Thomas Jefferson National Accelerator Facility, Newport News, VA

*with valuable contributions from: ¹¹Alberto Accardi, Vadim Guzey (Ruhr-Universität Bochum, Germany), ³Tuomas Lappi, ³Cyrille Marquet, ¹¹Jianwei Qiu.

http://www2.lns.mit.edu/eic

BROOKHAVEN NATIONAL LABORATORY

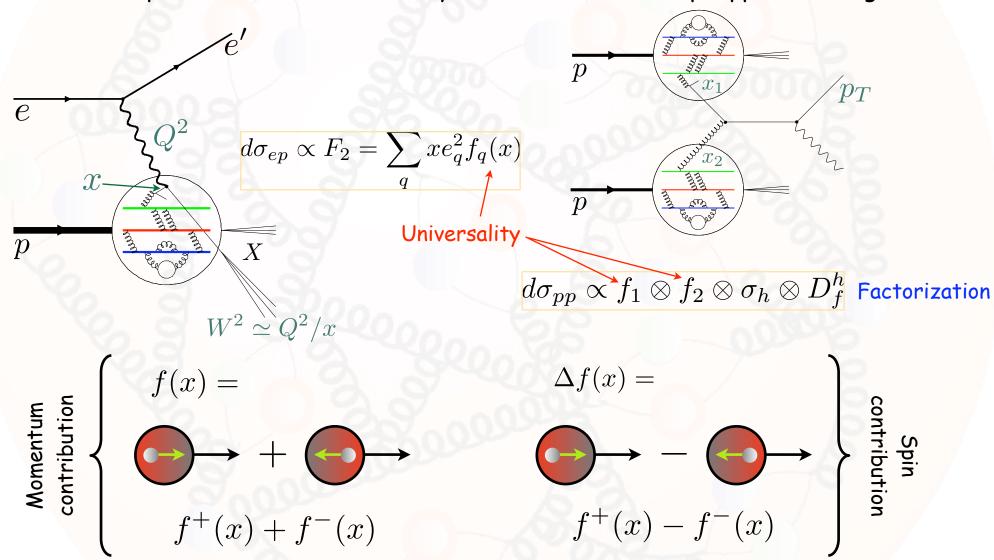
AGS-RHIC Users Meeting, Workshop 'The Future of RHIC and the physics at eRHIC' BNL, Upton, NY, June 20-22, 2007



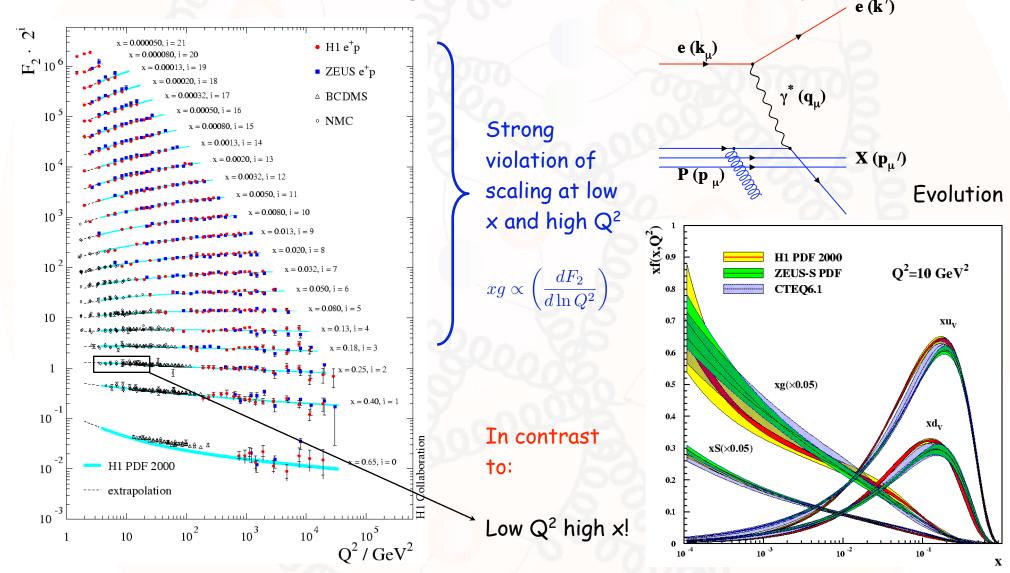
Outline

Future opportunities:Polarized ep physics

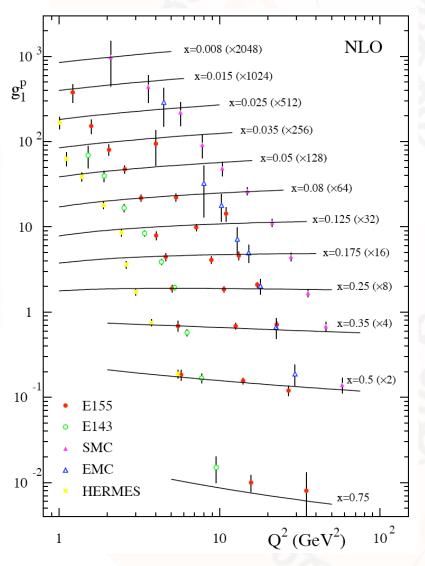
Future opportunities:
Low-x physics

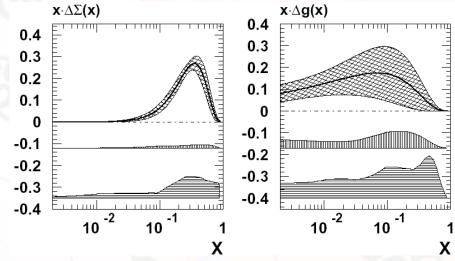

Concepts andStatus

Summary andOutlook



How do we probe the structure and dynamics of matter in ep / pp scattering?




What do we know about quarks/gluons? Momentum contribution to proton

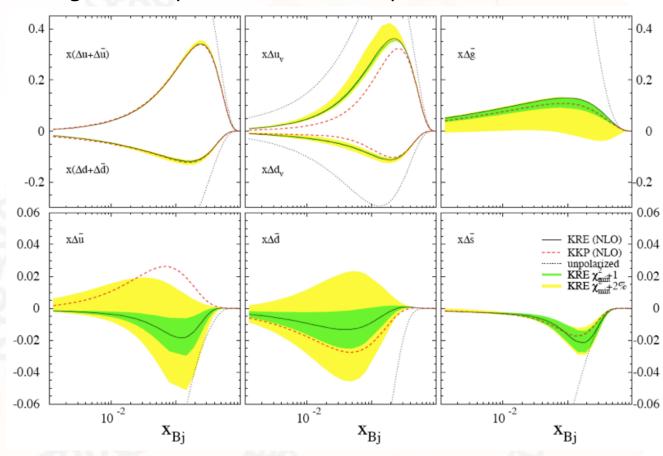
What do we know about quarks/gluons? Spin contribution to proton

EMC/SMC result: Fraction of proton spin carried by quarks is small:

$$\Delta\Sigma_{\rm (AB)} = 0.38^{+0.03}_{+0.03} \text{ at } Q^2 = 1 \, {\rm GeV}^2$$

O At present: ΔG is only poorly constrained from scaling violations in fixed target DIS experiments

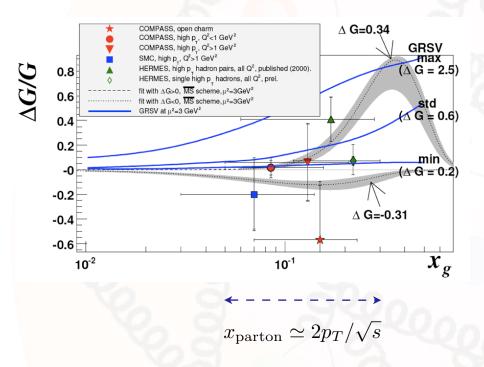
$$\Delta G_{(AB)} = 0.99^{+1.17}_{+0.31} \text{ at } Q^2 = 1 \,\text{GeV}^2$$

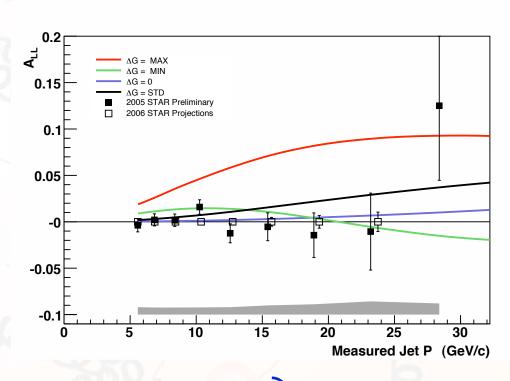

B. Adeva et al., SMC Collaboration, Phys. Rev. D58 (1998) 112002.

□ What do we know about quarks/gluons? Spin contribution to proton

- Recent global analysis (FS) including inclusive and semi-inclusive polarized DIS data
- Anti-quark (u/d/s)
 distributions and
 gluon distributions
 unstrained
- Important future constrain from:RHIC-SPIN and EIC

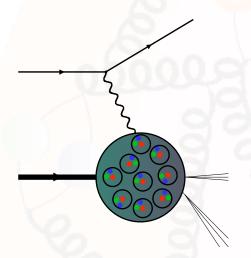
$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx$$




D. de Florian et al., Phys. Rev. D71, 094018 (2005).

$$\Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

Polarized fixed-target experiments and polarized pp experiments


- \circ High-p $_{\text{T}}$ and open charm polarized DIS data: LO extraction of gluon polarization
- O RHIC-SPIN: Recent data important constrain on gluon polarization (Global analysis needed!)

Large gluon
polarization in
measured kinematic
region disfavored

How do we probe the structure and dynamics of matter in eA / pA scattering?

$$Y_{+} = 1 + (1 - y)^{2}$$

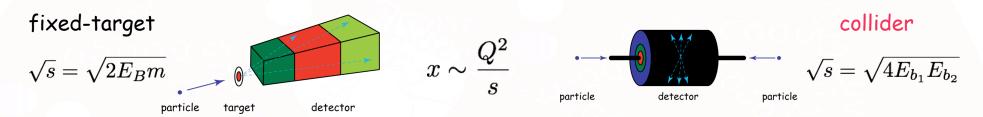
$$\left(\frac{d^2\sigma}{dydQ^2}\right) = \frac{2\pi\alpha^2 Y_+}{yQ^4} \left(F_2 - \frac{y^2}{Y_+}F_L\right) \qquad \qquad \sigma_{tot}^{\gamma^* p} = \sigma_T^{\gamma^* p} + \sigma_L^{\gamma^* p}$$

$$\sigma_{tot}^{\gamma^* p} = \sigma_T^{\gamma^* p} + \sigma_L^{\gamma^* p}$$

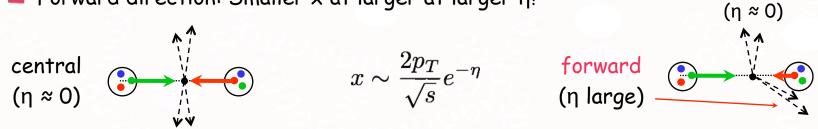
$$F_2 = \frac{Q^2}{4\pi^2 \alpha} \sigma_{tot}^{\gamma^* p} = \sum_{f=q\bar{q}} x e_q^2 f \qquad F_L = \frac{Q^2}{4\pi^2 \alpha} \sigma_L^{\gamma^* p} \propto xg$$

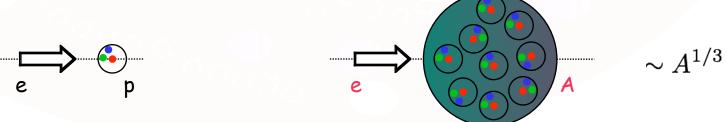
$$F_L = \frac{Q^2}{4\pi^2 \alpha} \sigma_L^{\gamma^* p} \propto xg$$

Universality

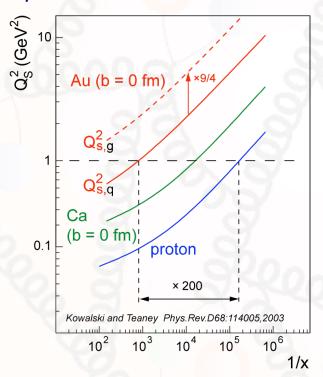

$$d\sigma = \sum_{f_1, f_2} f_1 \otimes f_2 \otimes d\hat{\sigma}^{f_1 f_2 \to fX} \otimes D_f^h$$

Factorization

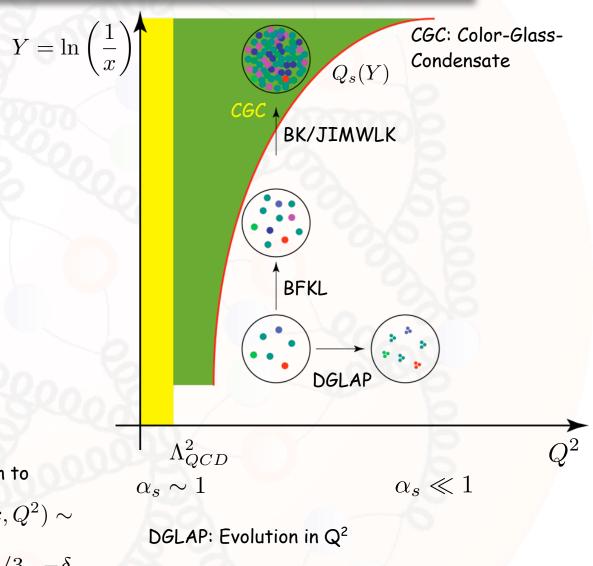

Important: Complementary probes are required for unambiguous extraction of observables in high-energy density QCD region!


- Low-x basics
 - O Access higher parton density system
 - Larger center-of-mass energy ($\int s$): Smaller x at larger $\int s!$

Forward direction: Smaller x at larger at larger η !

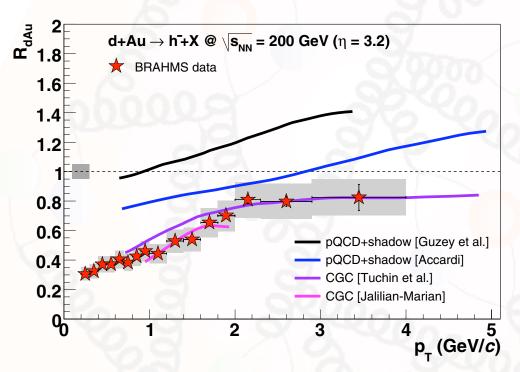

eA vs. ep scattering: Probe higher parton density system in eA compared to ep!

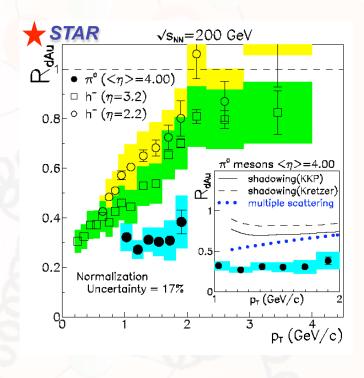
Low-x basics


O Dynamics: DGLAP / BFKL and CGC

Qs²: Saturation scale \Rightarrow Characterize transition to saturation region! $Q_s^2 \simeq \alpha_s \frac{1}{\pi R^2} x G(x,Q^2) \sim$

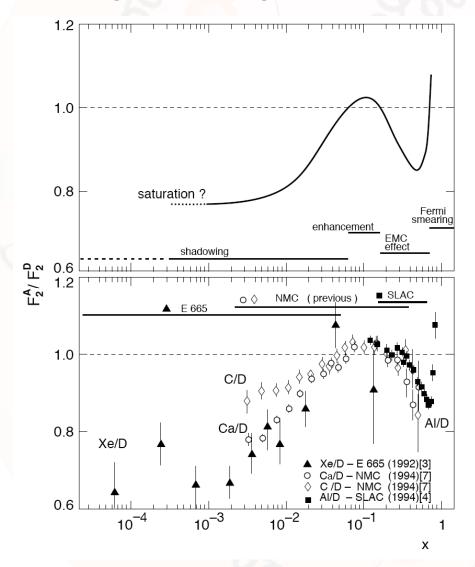
Enhanced for eA compared to ep:

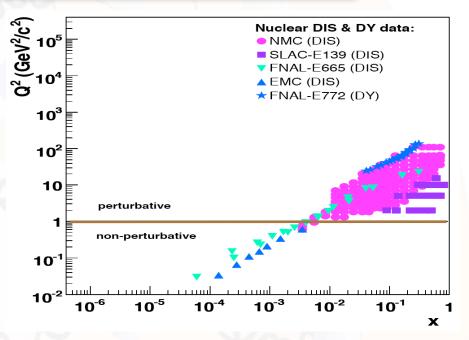

$$A^{1/3}x^{-\delta}$$



BFKL: Evolution in x

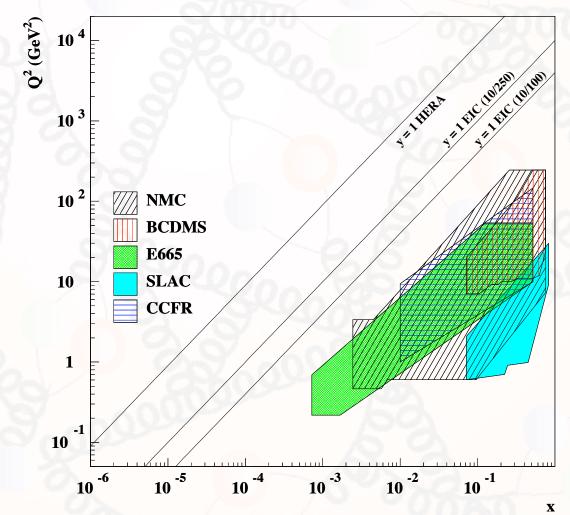
RHIC dA scattering at forward η




- Forward identified hadron production at RHIC in dAu collisions: Sizable suppression of yields for charged hadrons and neutral pions observed
- pQCD+shadowing calculations over-predict hadron yield suppression. Is this an indication for gluon saturation in Au nuclei?
- More RHIC dAu are expected with enhanced detector capabilities (PHENIX/STAR)

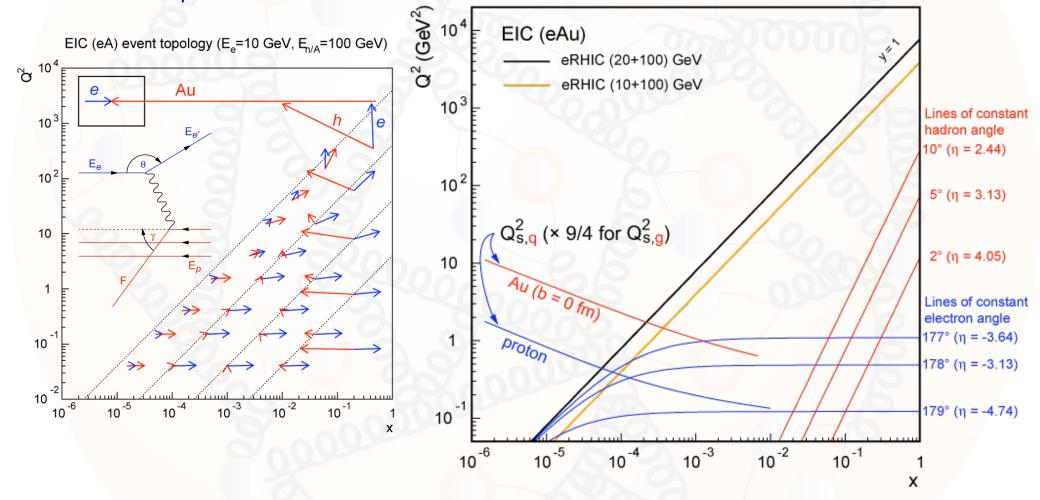
Concepts and Status: Low-x Physics

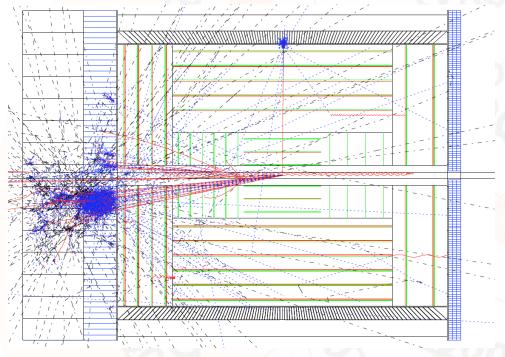
Fixed-target scattering



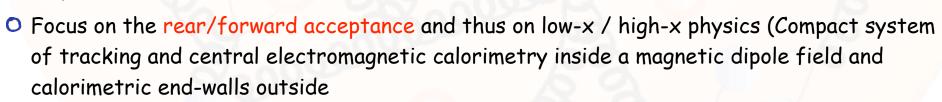
- Inclusive structure function ratio important to constrain nuclear modifications to gluon density
- World data (Fixed target) are concentrated above x>0.01 in pQCD region
- For x<0.01 only data in non-pQCD region

Future Opportunities

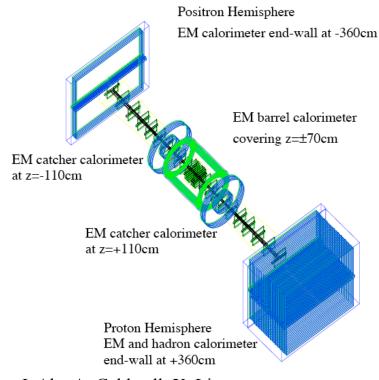

- Kinematics
 - O Comparison HERA / EIC / Fixed-target experiments


Kinematics

Acceptance



Facilities - Detector concepts



J. Pasukonis, B. Surrow, physics/0608290

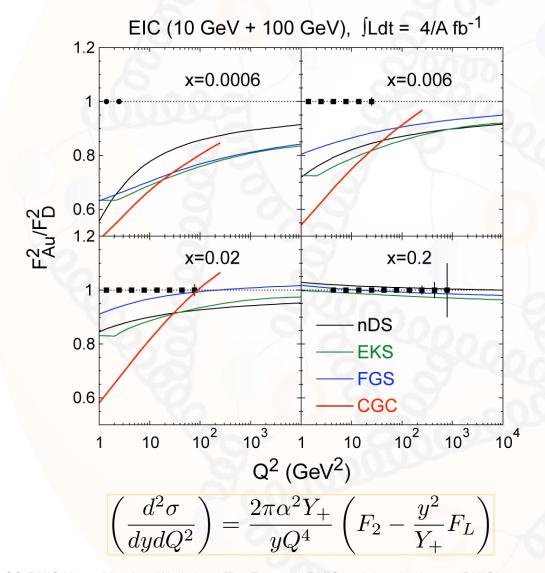
Concepts:

• Focus on a wide acceptance detector system (Compact calorimeter system)

- I. Abt, A. Caldwell, X. Liu,
- J. Sutiak, hep-ex 0407053

Unpolarized ep/eA physics

- O Precision measurement of F_2 at low x: Transition from hadronic to partonic behavior
- Precision measurement of the longitudinal structure function F₁
- O Precision measurement of F_2 at high x
- Measurement of diffractive and exclusive reactions
- O DVCS
- Precision measurement of eA scattering


Inclusive measurement involving electron at small polar angles (≈10mrad)

Inclusive measurement involving electron (Low x) - Variable √s

- Inclusive measurement
 (hadronic final state in forward direction): Good forward acceptance
 - Forward p tagging system
- Forward p tagging system photon/electron discrimination Variable \(\sqrt{s} \) and positrons
- Similar to ep case at low x High x: Forward acceptance careful study necessary!

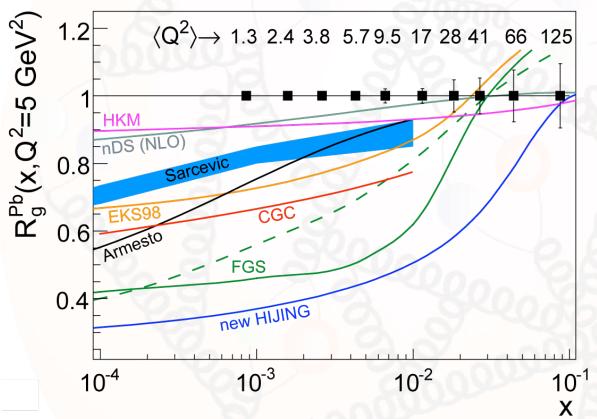
Observables: Nuclear structure function ratios

- F₂ will be one of the first
 measurements at EIC
- o nDS, EKS, FGS:

 pQCD models with different amounts of shadowing

EIC will allow to
distinguish between
pQCD and saturation
model predictions

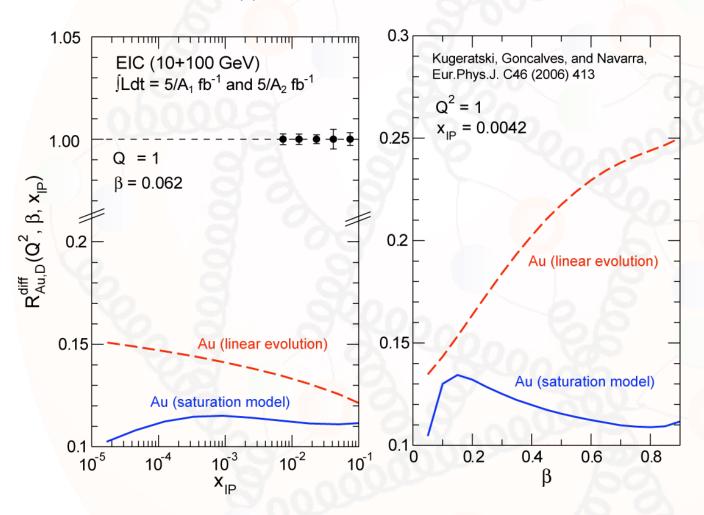
Observables: Longitudinal structure function


$$\left(\frac{d^2\sigma}{dydQ^2}\right) = \frac{2\pi\alpha^2 Y_+}{yQ^4} \left(F_2 - \frac{y^2}{Y_+}F_L\right) F_L = \frac{Q^2}{4\pi^2\alpha} \sigma_L^{\gamma^* p} \propto xg$$

- F_L measurement requires operation of EIC at different center-of-mass energies (√s)
- Precise measurement
 from low to high Q²
 region

Unique measurement at EIC of F_L with high precision in ep collisions to constrain gluon distribution

Observables: Ratio of nuclear gluon distribution function


 $\left(\frac{d^2\sigma}{dydQ^2}\right) = \frac{2\pi\alpha^2 Y_+}{yQ^4} \left(F_2 - \frac{y^2}{Y_+} F_L\right) F_L = \frac{Q^2}{4\pi^2\alpha} \sigma_L^{\gamma^* p} \propto x_L^{\gamma^* p}$

- O EIC will reach the unmeasured low-x region (<0.01) with high precision for Q²>1GeV²
- Constrain gluon modification due to nuclear effects in comparison to large range of models

EIC will measure
modification of gluon
distribution with high
precision!

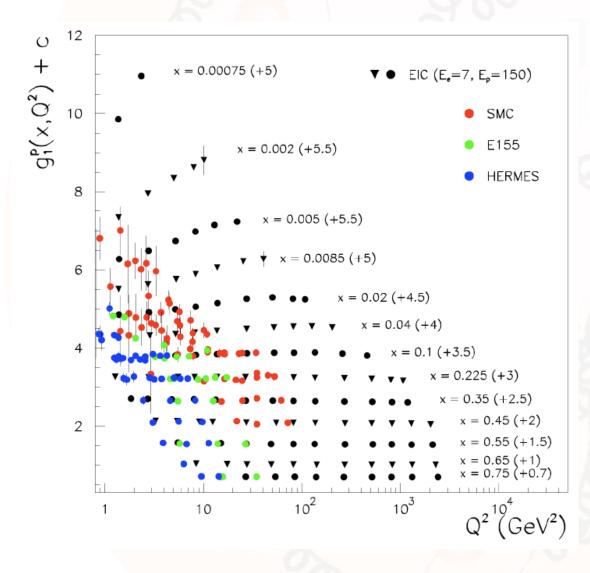
Observables: Diffractive measurements

 x_{IP} = momentum fraction of the Pomeron with respect to the hadron

β = momentum fraction of the struck parton with respect to the Pomeron

$$x_{TP} = x/\beta$$

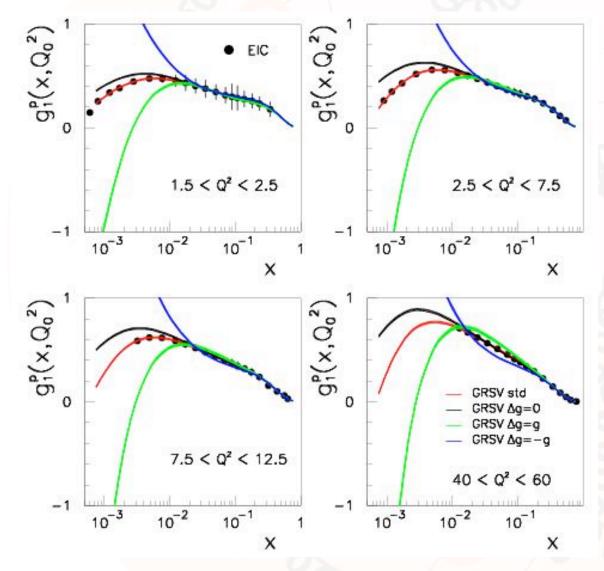
EIC allows to
distinguish between
linear evolution and
saturation models in
diffractive scattering
with high precision


- Polarized ep physics
 - \circ Precision measurement of g_1^p over wide range in Q^2
 - Extraction of gluon polarization through DGLAPNLO analysis
 - Extraction of strong coupling constant
 - O Precision measurement of g_1^n (neutron) (Polarized 3 He)
 - Photoproduction measurements
 - Electroweak structure function g₅ measurements
 - Flavor separation through semi-inclusive DIS
 - Target and current fragmentation studies
 - O Transversity measurements

Inclusive measurement - electron (Low x) and hadronic final state (High x) over wide acceptance range

- In addition: p tagging in forward direction
- Jet production and smallangle e tagger
- Hermetic detector
 configuration / e⁻ and e⁺
 Missing energy measurement
- K/π separation particle ID -Heavy flavor - Secondary vertex reconstruction and J/
 - Psi (Forward muons)
 - Forward acceptance:
 - Tracking and calorimetry

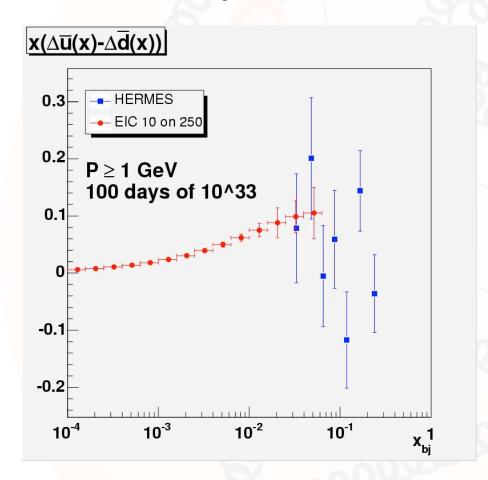
Observables: q^1_p as a function of Q^2

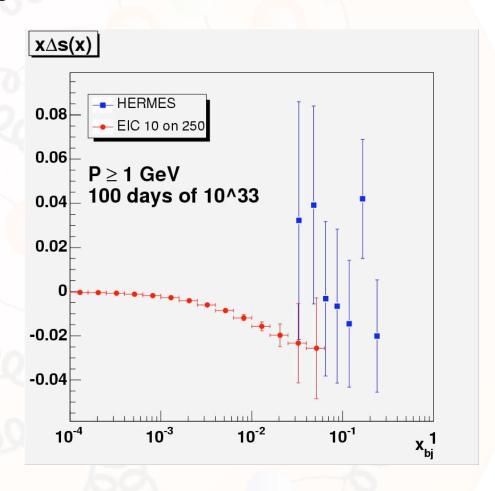


- \circ $E_e = 7GeV$ and $E_p = 150GeV$
- Luminosity: 5fb⁻¹

EIC allows a precision measurement of g_p^1 over wide range in Q^2 compared to previous experiments

Observables: g_p^1 as a function of x




- \circ $E_e = 7GeV$ and $E_p = 150GeV$
- Luminosity: 5fb⁻¹

EIC allows a precision measurement of g^1_p at lower x values compared to previous experiments

Observables: Quark flavor distributions

- Semi-inclusive DIS (Tagging of identified hadrons)
- Also: W/Z exchange

Summary and Outlook

- Status and Concepts
 - \circ HERA: Precision structure function measurements (F_2) at low x
 - \bigcirc At low \bigcirc and low x: DGLAP (Leading twist) approach leads to valence-like gluon behavior
 - O Diffraction: Important contribution to overall ep event yield
 - Dipole model: Allows to describe inclusive and diffractive measurements. Reach of saturation region at low x not conclusive
 - Lesson: Optimize any future EIC efforts for acceptance and luminosity
 - eA: No information in low-x region
 - dAu results at RHIC: Can saturation account for observed behavior? Complementary probes important (RHIC/LHC)!
 - Important constrain on gluon polarization at high-x from semi-inclusive polarized DIS and RHIC-SPIN program - Complementary to EIC

Summary and Outlook

- Future Opportunities
 - © EIC: First polarized ep collider Precision measurement of polarized gluon distribution at low-x and quark flavor structure
 - EIC will allow to study the physics of strong color fields
 - Required: EIC at high luminosity and optimized detector
 - EIC will allow to bridge several QCD communities (Hadron structure and Relativistic Heavy-Ion)
 - O Unique opportunity in precision QCD physics (The QCD LAB) complementary to other next generation facilities in Europe (LHC at CERN, FAIR at GSI) and Asia (J-PARC)